Rapid and Highly Selective Detection of H_2S by Ag and Ni doped $CaCu_3Ti_4O_{12}$ Film Sensors

Satreerat K. Hodak^{a,*}, Aukrit Natkaeo^a, Arisara Boontum^a, Ditsayut Phokharatkul^b, Jose H. Hodak^{c,d}, Anurat Wisitsoraat^e

^aDepartment of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand,

^bNational Electronics and Computer Technology Center, Pathumthani 12120, Thailand,

^cUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina,

^dUCONICET – Universidad de Buenos Aires, Instituto de Química-Física de Materiales, Ambientes y Energía (INQUIMAE), Buenos Aires,

Argentina,

^eGraphene and Printed Electronics Research Team (GPE), National Science and Technology Development Agency (NSTDA), Phathumthani 12120, Thailand

*Corresponding Author's E-mail: satreerat.h@chula.ac.th

Abstract

The detection of toxic gases such as H_2S is relevant in the food industries in the maintenance of the sewage system and health science. We have achieved sub-ppm sensitivity toward H_2S by using Ag and Ni doped CaCu₃Ti₄O₁₂ (CCTO) thin films prepared by a cost effective sol-gel method. Ag and Ni doped CCTO films were found to be remarkable sensors towards H_2S in the concentration range of 0.2-10 ppm. When compared with undoped CCTO sensors, Ag and Ni dopants cause a dramatic improvement of the response towards H_2S gas up to 10 times higher. These film sensors typically operated at ca. 250 °C and showed much shorter response times than that of undoped one. The operating principle of gas sensing mechanisms have been proposed.

Keywords: Ag-doped CaCu₃Ti₄O₁₂; Ag-doped CaCu₃Ti₄O₁₂; H₂S sensor