Development of Multi-dimensional Metal-oxide Nanostructures for Environmental Gas-Sensing Applications

A. Wisitsoraat¹, K. Jaruwongrangsee¹, C. Sriprachuabwong¹, A. Tuantranont¹, S. Phanichphant², C. Liewhiran³

¹National Science and Technology Development Agency, Pathumthani, Thailand ²Materials Science Research Center, Chiang Mai University, Chiang Mai, Thailand ³Dept. of Physics and Materials Science, Chiang Mai University, Chiang Mai, Thailand

Abstract

Metal oxide composites comprising multi-dimensional nanostructures are attractive for various gas-sensing applications due to their large effective specific surface area, unique electronic/chemical characteristics and high environmental stability. Over the past several years, we have developed highly sensitive gas sensors based on multi-dimensional metaloxide nanostructures prepared by different methods. For instance, 1D carbon-nanotubes (CNTs)-0D metal oxide (SnO₂, WO₃ and MoO₃) nanocomposites are developed by means of powder mixing and electron beam evaporation. Appropriate compositions of the nanocomposites lead to enhance responses towards gases such as NO2, ethanol, acetone and H₂. In addition, carbon-doped 1D metal oxide nanostructures such as WO₃ nanorods were produced by sputtering with glancing angle deposition and demonstrated to offer a significantly higher gas-sensing response compared with conventional undoped dense thin film prepared by conventional sputtering method. Moreover, carbon-coated 3D ZnO nanotetrapods fabricated by two-step vapor phase transport shows considerably enhanced response towards NO₂ compared with uncoated ZnO nanotetrapods. Additionally, graphenemetal oxides (SnO₂, WO₃, CuO and Bi₂WO₆) composite thick film gas sensors are fabricated based on one-step flame spray pyrolysis (FSP), electrolytic exfoliation and spin coating. The gas-sensing characteristics towards ethanol, acetone and NO₂ gases of the composite were found to be significantly improved with optimal graphene loading concentrations in the range of 0.5-5 wt%. Furthermore, 1D WO₃ nanorods-0D SnO₂ nanocomposites produced by fluidized bed reaction and FSP followed by thermal oxidation offered high selectivity and sensitivity towards NO₂.

Keywords: Metal oxide nanostructures, Multi-dimensional nanocomposites, Gas sensor.